Role Of Roots In Adaptation Of Soil-Indifferent Proteaceae To Calcareous Soils In South-Western Australia

JOURNAL OF EXPERIMENTAL BOTANY(2021)

引用 9|浏览13
暂无评分
摘要
Very few of the >650 Proteaceae species in south-western Australia cope with the high calcium (Ca) levels in young, calcareous soils (soil indifferent); most are Ca sensitive and occur on nutrient-impoverished, acidic soils (calcifuge). We assessed possible control points for Ca transport across roots of two soil-indifferent (Hakea prostrata and Banksia prionotes) and two calcifuge (H. incrassata and B. menziesii) Proteaceae. Using quantitative X-ray microanalysis, we investigated cell-specific elemental Ca concentrations at two positions behind the apex in relation to development of apoplastic barriers in roots of plants grown in nutrient solution with low or high Ca supply. In H. prostrata, Ca accumulated in outer cortical cells at 20 mm behind the apex, but [Ca] was low in other cell types. In H. incrassata, [Ca] was low in all cells. Accumulation of Ca in roots of H. prostrata corresponded to development of apoplastic barriers in the endodermis. We found similar [Ca] profiles in roots and similar [Ca] in leaves of two contrasting Banksia species. Soilindifferent Hakea and Banksia species show different strategies to inhabit calcareous soils: H. prostrata intercepts Ca in roots, reducing transport to shoots, whereas B. prionotes allocates Ca to specific leaf cells.
更多
查看译文
关键词
Apoplastic barriers, calcifuge, calcium, cellular distribution, cortex, endodermis, exodermis, Proteaceae, suberin, X-ray microanalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要