Multimodal Response To Copper Binding In Superoxide Dismutase Dynamics

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2020)

引用 13|浏览33
暂无评分
摘要
Copper/zinc superoxide dismutase (SOD) is a homodimeric metalloenzyme that has been extensively studied as a benchmark for structure-function relationships in proteins, in particular because of its implication in the familial form of the neurodegenerative disease amyotrophic lateral sclerosis. Here, we investigate microcrystalline preparations of two differently metalated forms of SOD, namely, the fully mature functional Cu,Zn state and the E,Zn-SOD state in which the Cu site is empty. By using solid-state NMR with fast magic-angle spinning (MAS) at high magnetic fields (H-1 Larmor frequency of 800-1000 MHz), we quantify motions spanning a dynamic range from ns to ms. We determine that metal ion uptake does not act as a rigidification element but as a switch redistributing motional processes on different time scales, with coupling of the dynamics of histidine side chains and those of remote key backbone elements of the protein.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要