Construction Of Tantalum/Poly(Ether Imide) Coatings On Magnesium Implants With Both Corrosion Protection And Osseointegration Properties

BIOACTIVE MATERIALS(2021)

引用 47|浏览33
暂无评分
摘要
Poly(ether imide) (PEI) has shown satisfactory corrosion protection capability with good adhesion strength as a coating for magnesium (Mg), a potential candidate of biodegradable orthopedic implant material. However, its innate hydrophobic property causes insufficient osteoblast affinity and a lack of osseointegration. Herein, we modify the physical and chemical properties of a PEI-coated Mg implant. A plasma immersion ion implantation technique is combined with direct current (DC) magnetron sputtering to introduce biologically compatible tantalum (Ta) onto the surface of the PEI coating. The PEI-coating layer is not damaged during this process owing to the extremely short processing time (30 s), retaining its high corrosion protection property and adhesion stability. The Ta-implanted layer (roughly 10-nm-thick) on the topmost PEI surface generates long-term surface hydmphilicity and favorable surface conditions for pre-osteoblasts to adhere, proliferate, and differentiate. Furthermore, in a rabbit femur study, the Ta/PEI-coated Mg implant demonstrates significantly enhanced bone tissue affinity and osseointegration capability. These results indicate that Ta/PEI-coated Mg is promising for achieving early mechanical fixation and long-term success in biodegradable orthopedic implant applications.
更多
查看译文
关键词
Magnesium, Tantalum, Poly(ether imide), Bio-functionalized coating, Biodegradable orthopedic implants
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要