Po2 Of The Metathoracic Ganglion In Response To Progressive Hypoxia In An Insect

BIOLOGY LETTERS(2020)

引用 4|浏览2
暂无评分
摘要
Mammals regulate their brain tissue PO2 tightly, and only small changes in brain PO2 are required to elicit compensatory ventilation. However, unlike the flow-through cardiovascular system of vertebrates, insect tissues exchange gases through blind-ended tracheoles, which may involve a more prominent role for diffusive gas exchange. We tested the effect of progressive hypoxia on ventilation and the PO2 of the metathoracic ganglion (neural site of control of ventilation) using microelectrodes in the American locust, Schistocerca americana. In normal air (21 kPa), PO2 of the metathoracic ganglion was 12 kPa. The PO2 of the ganglion dropped as air PO2 dropped, with ventilatory responses occurring when ganglion PO2 reached 3 kPa. Unlike vertebrates, insects tolerate relatively high resting tissue PO2 levels and allow tissue PO2 to drop during hypoxia, activity and discontinuous gas exchange before activating convective or spiracular gas exchange. Tracheated animals, and possibly pancrustaceans in general, seem likely to generally experience wide spatial and temporal variation in tissue PO2 compared with vertebrates, with important implications for physiological function and the evolution of oxygen-using proteins.
更多
查看译文
关键词
oxygen, tracheal system, hypoxia, ventilation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要