Hydrophobically modified chitin/halloysite nanotubes composite sponges for high efficiency oil-water separation

International Journal of Biological Macromolecules(2019)

引用 0|浏览0
暂无评分
摘要
A high-performance oil-water separation device that built by environment-friendly materials is a promising strategy to solve water pollution problem. In this study, we developed an oil-water separation system with chitin/halloysite nanotubes (C/HNTs) composites. C/HNTs were crosslinked by epichlorohydrin and freeze-dried, then a porous sponge was formed. The C/HNTs sponge was modified to be hydrophobic via immersing into bromohexadecane ethanol solution. The surface structure, mechanical properties, microstructure, oil absorption and oil-water separation ability of the C/HNTs sponge were investigated. The addition of HNTs significantly increased the compressive strength of chitin sponge without influence on porous structure. IR spectra indicated the successful coating of bromohexadecane on the C/HNTs sponge surface, which enabled the hydrophobicity and lipophilicity of this construct. The inside construct of the C/HNTs sponges were full of interconnected pores, and the pore size ranged from 250 to 500 μm. The absorption capability for various oil and grease were measured, including methylbenzene, sunflower seed oil, carbon dichloride, n-hexane, chloroform and acetone. It is found that the total amount of chloroform absorbed by a C/HNTs sponge was ~11.23 times of the sponge's weight, and the absorption for hexane was ~3.94 times of the sponge's weight. The sponge also exhibited an excellent oil-water separation ability with as high as 98.7% separation efficiency. All the results suggested that the chitin/HNTs sponges with improved mechanical property would have a great potential in oil-water separation.
更多
查看译文
关键词
Chitin,Halloysite,Hydrophobicity,Oil-water separation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要