谷歌浏览器插件
订阅小程序
在清言上使用

Nylon 6 and nylon 6,6 micro- and nanoplastics: A first example of their accurate quantification, along with polyester (PET), in wastewater treatment plant sludges.

Journal of hazardous materials(2020)

引用 36|浏览17
暂无评分
摘要
A novel procedure for nylon 6 and nylon 6,6 polyamide (PAs) microplastics (MPs) quantification is described for the first time. The overall procedure, including quantification of poly(ethylene terephthalate) (PET), was tested on wastewater treatment plant (WWTP) sludges. The three polymers account for the largest global share of synthetic textile microfibers, being possibly the most common MPs released upon laundering in urban wastewaters. Therefore, measuring their content in WWTP sludges may provide an accurate picture of the potential risks associated with both the inflow of these MPs in natural water bodies and the practice of using WWTP sludges as agricultural soil amendment. The novel procedure involves PAs depolymerization by acid hydrolysis followed by derivatization of the monomers 6-aminohexanoic acid (AHA) and hexamethylene diamine (HMDA) with a fluorophore. Reversed-phase HPLC analysis with fluorescence detection results in high sensitivities for both AHA (LOD = 8.85·10-4 mg/L, LOQ = 3.73·10-3 mg/L) and HMDA (LOD = 2.12·10-4, LOQ = 7.04·10-4 mg/L). PET quantification involves depolymerization, in this case by alkaline hydrolysis, followed by HPLC analysis of its comonomer terephthalic acid. Eight sludge samples from four WWTPs in Italy showed contamination in the 29.3-215.3 ppm and 10.6-134.6 ppm range for nylon 6 and nylon 6,6, respectively, and in the 520-1470 ppm range for PET.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要