Downregulation of lncRNA UCA1 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson's disease through the inhibition of the PI3K/Akt signaling pathway

International Immunopharmacology(2019)

引用 0|浏览0
暂无评分
摘要
This study is conducted to investigate the role of lncRNA urothelial carcinoma-associated 1 (UCA1) in the protection of dopaminergic neurons in Parkinson's disease (PD) through regulating the PI3K/Akt signaling pathway. PD rat model was induced by injection of 6-hydroxydopamine (6-OHDA) to damage the substantia nigra striatum. The successfully modeled PD rats were introduced with siRNA-negative control (NC) or UCA1-siRNA. The expression of UCA1 in neurobehavioral change, neuroinflammatory response and oxidative stress of PD rats were explored. The effect of UCA1 on the PI3K/Akt signaling pathway and downstream proteins IκBα and ERK was also investigated. The rats with PD exhibited aggregated neurobehavioral change, increased neuroinflammatory response and oxidative stress. Down-regulation of UCA1 up-regulated the expression of TH positive cells and DA content, reduced the apoptosis of substantia nigra neurons, the apoptosis of substantia nigra neurons and oxidative stress and improved the neuroinflammatory response in PD rats. Down-regulation of UCA1 inhibited the activation of the PI3K/AKT signaling pathway in substantia nigra of PD rats. Our study suggests that the downregulated lncRNA UCA1 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in PD rats through the inhibition of the PI3K/Akt signaling pathway.
更多
查看译文
关键词
Parkinson's disease,UCA1,PI3K/Akt signaling pathway,Dopaminergic neurons,Oxidative stress,Inflammation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要