A Modular Polymer Microbead Angiogenesis Scaffold To Characterize The Effects Of Adhesion Ligand Density On Angiogenic Sprouting

BIOMATERIALS(2021)

引用 11|浏览21
暂无评分
摘要
Three-dimensional micro-physiological in vitro representations of human tissues and organs are emerging as important models of human pathophysiology and stand to make a significant impact on the process of drug discovery and development. An enduring need is to create microvascular networks within such 3D models, particularly for tissues with high metabolic demand such as the liver, pancreas, and the central nervous system. Here we report a facile approach to drive angiogenesis in nascent 3D culture models by embedding degradable hydrogel microbeads coated with induced pluripotent stem cell-derived endothelial cells (MB-iPSC-ECs) in a dense epithelial tissue. Specifically, we describe an approach to optimize microbead scaffold cues, independent of the external environment, by evaluating the iPSC-EC to microbead adhesion properties and how they influence the propensity of cells to both coat microbeads uniformly and undergo sprouting angiogenesis. We encapsulated MB-iPSC-ECs in PEG hydrogels, systematically varied the relative concentration of integrin-targeting peptide motifs in the microbead and surrounding environment, and found that an optimal microbead scaffold ligand regime of 0.1-0.25 mM promotes iPSC-EC monolayer formation and subsequent invasion into the synthetic matrix. We used these results to predict the regime of adhesion ligand required to promote angiogenesis of MB-iPSC-ECs in a co-culture hepatocarcinoma (HEPG2) microtissue model. This modular degradable microbead platform has the potential to promote angiogenic sprouting, which may ultimately support vascularization of a variety of cell-dense tissues.
更多
查看译文
关键词
Angiogenesis, Poly(ethylene glycol) hydrogel, Biomaterials, Tissue engineering, Microbead, Scaffold
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要