Li2O-2B2O3 coating decorated Li4Ti5O12 anode for enhanced rate capability and cycling stability in lithium-ion batteries.

Journal of colloid and interface science(2020)

引用 19|浏览18
暂无评分
摘要
Li2O-2B2O3 (LBO) ionic conductor with high conductivity plays an important role in boosting the rate performance and cycling stability of Li4Ti5O12 (LTO) anode for lithium-ion batteries by preventing direct exposure of LTO to the electrolyte. Herein, the effect of LBO coating layer on lithium ion (Li+) storage performance is investigated in detail by adjusting the adding amount of LBO precursor dispersion. LTO coated with 2 wt% LBO achieves an optimum performance with a specific capacity of 172.9 mA h g-1 at a current density of 0.1 A g-1, an improved rate capability (specific capacity of 127.9 mA h g-1 is maintained when the current density is 20 times than 0.1 A g-1) and a remarkable cycling stability (capacity retention of 94.2% after 4000 cycles at 2.0 A g-1). These LBO-LTO composites are competitive and promising candidates for electrochemical energy storage and other applications.
更多
查看译文
关键词
Li2O-2B2O3,Ionic conductor,Coating modification,Li4Ti5O12 anode,Lithium-ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要