Hybrid supercapacitors constructed from double-shelled cobalt-zinc sulfide/copper oxide nanoarrays and ferrous sulfide/graphene oxide nanostructures.

Journal of colloid and interface science(2020)

引用 51|浏览1
暂无评分
摘要
Evolution of renewable energies in the era of the modernized world has been strongly tied up to the incessant development of high-performance energy storage systems benefiting from both high energy and power densities. In the present work, binder-free positive electrodes are fabricated via a facile electrochemical deposition route in which copper oxide nanorods (CuO NRs) directly grown onto the copper foam (CF) are decorated with bimetallic cobalt-zinc sulfide nanoarrays (Co-Zn-S NAs). The fabricated Co-Zn-S@CuO-CFs represent promising specific capacity of 317.03 C.g-1 at 1.76 A.g-1, along with superior cyclic stability (113% retention after 4500 cycles). Negative electrodes were further prepared through a direct deposition of iron sulfide nanosheets (Fe-S NSs) onto the graphene oxide (GO), showing remarkable the specific capacitance of 543.9 F.g-1 at 0.79 A.g-1. Receiving benefits from remarkable energy and power densities (25.71 Wh.kg-1 and 8.73 kW.kg-1) alongside the reasonable life-stability, the fabricated asymmetric supercapacitor (ASC) devices are on merit for developing high-performance energy storage systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要