谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Modulating the Infarcted Ventricle's Refractoriness with an Epicardial Biomaterial

Ikeotunye Royal Chinyere, Mathew Hutchinson, Talal Moukabary, Jen Watson Koevary, Elizabeth Juneman, Steven Goldman, Jordan J. Lancaster

JOURNAL OF INVESTIGATIVE MEDICINE(2021)

引用 2|浏览24
暂无评分
摘要
Patients diagnosed with heart failure with reduced ejection fraction (HFrEF) are at increased risk of monomorphic ventricular tachycardia (VT) and ventricular fibrillation. The presence of myocardial fibrosis provides both anatomical and functional barriers that promote arrhythmias in these patients. Propagation of VT in a reentrant circuit depends on the presence of excitable myocardium and the refractoriness of the circuit. We hypothesize that myocardial refractoriness can be modulated surgically in a model of HFrEF, leading to decreased susceptibility to VT. Male Sprague-Dawley rats were infarcted via permanent left coronary artery ligation. At 3 weeks post-infarction, engineered grafts composed of human dermal fibroblasts cultured into a polyglactin-910 biomaterial were implanted onto the epicardium to cover the area of infarction. Three weeks post-graft treatment, all rats underwent a terminal electrophysiologic study to compare monophasic action potential electroanatomic maps and susceptibility to inducible monomorphic VT. HFrEF rats (n=29) demonstrated a longer (p=0.0191) ventricular effective refractory period (ERP) and a greater (p=0.0394) VT inducibility compared with sham (n=7). HFrEF rats treated with the graft (n=12) exhibited no change in capture threshold (p=0.3220), but had a longer ventricular ERP (p=0.0029) compared with HFrEF. No statistically significant change in VT incidence was found between HFrEF rats treated with the graft and untreated HFrEF rats (p=0.0834). Surgical deployment of a fibroblast-containing biomaterial in a rodent ischemic cardiomyopathy model prolonged ventricular ERP as measured by programmed electrical stimulation. This hypothesis-generating study warrants additional studies to further characterize the antiarrhythmic or proarrhythmic effects of this novel surgical therapy.
更多
查看译文
关键词
fibroblasts,polymers,heart failure,cardiac arrhythmias,transplants
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要