Simple Sonochemical Method To Optimize The Heating Efficiency Of Magnetic Nanoparticles For Magnetic Fluid Hyperthermia

ACS OMEGA(2020)

引用 31|浏览8
暂无评分
摘要
We developed a fast, single-step sonochemical strategy for the green manufacturing of magnetite (Fe3O4) magnetic nanoparticles (MNPs), using iron sulfate (FeSO4) as the sole source of iron and sodium hydroxide (Na(OH)) as the reducing agent in an aqueous medium. The designed methodology reduces the environmental impact of toxic chemical compounds and minimizes the infrastructure requirements and reaction times down to minutes. The Na(OH) concentration has been varied to optimize the final size and magnetic properties of the MNPs and to minimize the amount of corrosive byproducts of the reaction. The change in the starting FeSO4 concentration (from 5.4 to 43.1 mM) changed the particle sizes from (20 +/- 3) to (58 +/- 8) nm. These magnetite MNPs are promising for biomedical applications due to their negative surface charge, good heating properties (approximate to 324 +/- 2 W/g), and low cytotoxic effects. These results indicate the potential of this controlled, easy, and rapid ultrasonic irradiation method to prepare nanomaterials with enhanced properties and good potential for use as magnetic hyperthermia agents.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要