Proteome-wide modulation of S-nitrosylation in Trypanosoma cruzi trypomastigotes upon interaction with the host extracellular matrix

Journal of Proteomics(2021)

引用 3|浏览23
暂无评分
摘要
Trypanosoma cruzi trypomastigotes adhere to extracellular matrix (ECM) to invade mammalian host cells regulating intracellular signaling pathways. Herein, resin-assisted enrichment of thiols combined with mass spectrometry were employed to map site-specific S-nitrosylated (SNO) proteins from T. cruzi trypomastigotes incubated (MTy) or not (Ty) with ECM. We confirmed the reduction of S-nitrosylation upon incubation with ECM, associated with a rewiring of the subcellular distribution and intracellular signaling pathways. Forty, 248 and 85 SNO-peptides were identified only in MTy, Ty or in both conditions, respectively. SNO proteins were enriched in ribosome, transport, carbohydrate and lipid metabolisms. Nitrosylation of histones H2B and H3 on Cys64 and Cys126, respectively, is described. Protein-protein interaction networks revealed ribosomal proteins, proteins involved in carbon and fatty acid metabolism to be among the enriched protein complexes. Kinases, phosphatases and enzymes involved in the metabolism of carbohydrates, lipids and amino acids were identified as nitrosylated and phosphorylated, suggesting a post-translational modifications crosstalk. In silico mapping of nitric oxide synthase (NOS) genes, previously uncharacterized, matched to four putative T. cruzi proteins expressing C-terminal NOS domain. Our results provide the first site-specific characterization of S-nitrosylated proteins in T. cruzi and their modulation upon ECM incubation before infection of the mammalian hosts.
更多
查看译文
关键词
S-nitrosylation,Proteomic,Post-translational modifications,Histones,Nitric oxide synthase,Trypanosoma cruzi
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要