Time-Resolved Fuel Density Profiles of the Stagnation Phase of Indirect-Drive Inertial Confinement Implosions

Riccardo Tommasini,O. L. Landen,L. Berzak Hopkins, S. P. Hatchett,D. H. Kalantar,W. W. Hsing,D. A. Alessi, S. L. Ayers,S. D. Bhandarkar, M. W. Bowers,D. K. Bradley, A. D. Conder,J. M. Di Nicola,P. Di Nicola,L. Divol,D. Fittinghoff, G. Gururangan,G. N. Hall,M. Hamamoto, D. R. Hargrove,E. P. Hartouni,J. E. Heebner, S. Herriot,M. R. Hermann,J. P. Holder,D. M. Holunga,D. Homoelle, C. A. Iglesias,N. Izumi,A. J. Kemp,T. Kohut,J. J. Kroll, K. LaFortune,J. K. Lawson,R. Lowe-Webb,A. J. MacKinnon,D. Martinez, N. D. Masters, M. P. Mauldin,J. Milovich,A. Nikroo, J. K. Okui,J. Park,M. Prantil,L. J. Pelz, M. Schoff,R. Sigurdsson,P. L. Volegov, S. Vonhof, T. L. Zobrist,R. J. Wallace, C. F. Walters, P. Wegner, C. Widmayer,W. H. Williams, K. Youngblood, M. J. Edwards,M. C. Herrmann

PHYSICAL REVIEW LETTERS(2020)

引用 21|浏览99
暂无评分
摘要
The implosion efficiency in inertial confinement fusion depends on the degree of stagnated fuel compression, density uniformity, sphericity, and minimum residual kinetic energy achieved. Compton scattering-mediated 50-200 keV x-ray radiographs of indirect-drive cryogenic implosions at the National Ignition Facility capture the dynamic evolution of the fuel as it goes through peak compression, revealing low-mode 3D nonuniformities and thicker fuel with lower peak density than simulated. By differencing two radiographs taken at different times during the same implosion, we also measure the residual kinetic energy not transferred to the hot spot and quantify its impact on the implosion performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要