Automated quantification of macular fluid in retinal diseases and their response to anti-VEGF therapy

BRITISH JOURNAL OF OPHTHALMOLOGY(2022)

引用 23|浏览10
暂无评分
摘要
Aim To objectively assess disease activity and treatment response in patients with retinal vein occlusion (RVO), neovascular age-related macular degeneration (nAMD) and centre-involved diabetic macular oedema (DME), using artificial intelligence-based fluid quantification. Methods Posthoc analysis of 2311 patients (11 151 spectral-domain optical coherence tomography volumes) from five clinical, multicentre trials, who received a flexible antivascular endothelial growth factor (anti-VEGF) therapy over a 12-month period. Fluid volumes were measured with a deep learning algorithm at baseline/months 1, 2, 3 and 12, for three concentric circles with diameters of 1, 3 and 6 mm (fovea, paracentral ring and pericentral ring), as well as four sectors surrounding the fovea (superior, nasal, inferior and temporal). Results In each disease, at every timepoint, most intraretinal fluid (IRF) per square millimetre was present at the fovea, followed by the paracentral ring and pericentral ring (p<0.0001). While this was also the case for subretinal fluid (SRF) in RVO/DME (p<0.0001), patients with nAMD showed more SRF in the paracentral ring than at the fovea up to month 3 (p<0.0001). Between sectors, patients with RVO/DME showed the highest IRF volumes temporally (p<0.001/p<0.0001). In each disease, more SRF was consistently found inferiorly than superiorly (p<0.02). At month 1/12, we measured the following median reductions of initial fluid volumes. For IRF: RVO, 95.9%/97.7%; nAMD, 91.3%/92.8%; DME, 37.3%/69.9%. For SRF: RVO, 94.7%/97.5%; nAMD, 98.4%/99.8%; DME, 86.3%/97.5%. Conclusion Fully automated localisation and quantification of IRF/SRF over time shed light on the fluid dynamics in each disease. There is a specific anatomical response of IRF/SRF to anti-VEGF therapy in all diseases studied.
更多
查看译文
关键词
Retina, Imaging, Macula, Treatment Medical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要