Atractylenolide III alleviates the apoptosis through inhibition of autophagy by the mTOR-dependent pathway in alveolar macrophages of human silicosis

MOLECULAR AND CELLULAR BIOCHEMISTRY(2020)

Cited 14|Views29
No score
Abstract
Silica-induced apoptosis of alveolar macrophages (AMs) is an essential part of silicosis formation. Autophagy tends to present a bidirectional effect on apoptosis. Our previous study found that the blockade of autophagy degradation might aggravate the apoptosis of AMs in human silicosis. We presume that targeting the autophagic pathway is regarded as a promising new strategy for silicosis fibrosis. As a main active component of the Atractylodes rhizome, Atractylenolide III (ATL-III) has been widely applied in clinical anti-inflammation. However, the effect and mechanism of ATL-III on autophagy in AMs of silicosis are unknown. In this study, we found that ATL-III might inhibit autophagy by mTOR-dependent manner, thereby improving the blockage of autophagic degradation in AMs. ATL-III alleviated the apoptosis of AMs in human silicosis. Furthermore, Rapamycin reversed the protective effect of ATL-III in AMs. These results indicate that ATL-III may be a potentially protective ingredient targeting autophagy for workers exposed to silica dust. These findings also suggest that inhibition of autophagy may be an effective way to alleviate the apoptosis of AMs in silicosis.
More
Translated text
Key words
Atractylenolide III, mTOR-dependent autophagy, Apoptosis, Alveolar macrophages, Silicosis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined