6TiSCH++ with Bluetooth 5 and Concurrent Transmissions

EWSN(2021)

引用 0|浏览62
暂无评分
摘要
Targeting dependable communications for industrial Internet of Things applications, IETF 6TiSCH provides mechanisms for efficient scheduling, routing, and forwarding of IPv6 traffic across low-power mesh networks. Yet, despite an overwhelming body of literature covering both centralized and distributed scheduling schemes for 6TiSCH, an effective control solution for large-scale multi-hop mesh networks remains an open challenge. This paper addresses this with a novel approach that eliminates much of the routing and link-layer overhead incurred by centralized schedulers, and provides a robust mechanism for data dissemination synchronization within 6TiSCH. Specifically, we leverage the physical layer (PHY) switching capabilities of modern low-power wireless platforms to build on recent work demonstrating the viability of Concurrent Transmission (CT)-based flooding protocols across the Bluetooth 5 (BT 5) PHYs. By switching the PHY and MAC layer at runtime, we inject a BT 5-based CT flood within a standard IEEE 802.15.4 TSCH slotframe, thereby providing a reliable, low-latency scheme for 6TiSCH control messaging. We present an analytical model and experimental evaluation showing how our solution not only exploits the BT 5 high data-rate PHY layers for rapid data dissemination, but can also provide reliable 6TiSCH association and synchronization even under external radio interference. We further discuss how the proposed technique can be used to address other open challenges within the standard.
更多
查看译文
关键词
bluetooth
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要