Two-Dimensional Graphitic Carbon Nitride Nanosheets: A Novel Platform For Flexible, Robust And Optically Active Triboelectric Nanogenerators

NANOSCALE(2020)

引用 22|浏览8
暂无评分
摘要
We report on the characteristics of mechanically flexible, stable and photoactive triboelectric nanogenerators based on two-dimensional graphitic carbon nitride (g-C3N4) nanosheets. The performance of nanogenerator devices has been studied with varying frictional surfaces (such as polypropylene, aluminium oxide, Teflon and polyethylene terephthalate). Energy band diagrams have been used to explain the mechanism of triboelectric charge transfer in pristine and doped g-C3N4, with the former showing better characteristics. An optimized device has been found to be responsive to external stimuli to generate an output voltage of 10 V upon simple biomechanical impulses. To demonstrate the efficacy for practical applications of g-C3N4-based triboelectric nanogenerators, output voltages have been recorded for different common activities like walking, water showering, using as a writing/drawing pad, etc. Repetitive finger tapping on a device could charge a capacitor to as high as 55 V within similar to 50 s, while that under UV illumination is found to be much faster (similar to 14 s) due to photoinduced carrier generations in g-C3N4. The exhibition of a superior photoresponsivity of similar to 117 V W-1 under UV illumination demonstrates the dual functionality of g-C3N4-based triboelectric devices as a nanogenerator as well as an active flexible photosensor, which is hitherto unreported. Excellent mechanical flexibility, stability and photoinduced enhancement of output characteristics make g-C3N4 an attractive candidate for nanogenerator devices for future applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要