谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Continuous Human Activity Classification From FMCW Radar With Bi-LSTM Networks

IEEE Sensors Journal(2020)

引用 126|浏览40
暂无评分
摘要
Recognition of human movements with radar for ambient activity monitoring is a developed area of research that yet presents outstanding challenges to address. In real environments, activities and movements are performed with seamless motion, with continuous transitions between activities of different duration and a large range of dynamic motions, compared with discrete activities of fixed-time lengths which are typically analysed in the literature. This paper proposes a novel approach based on recurrent LSTM and Bi-LSTM network architectures for continuous activity monitoring and classification. This approach uses radar data in the form of a continuous temporal sequence of micro-Doppler or range-time information, differently from from other conventional approaches based on convolutional networks that interpret the radar data as images. Experimental radar data involving 15 participants and different sequences of 6 actions are used to validate the proposed approach. It is demonstrated that using the Doppler-domain data together with the Bi-LSTM network and an optimal learning rate can achieve over 90% mean accuracy, whereas range-domain data only achieved approximately 76%. The details of the network architectures, insights in their behaviour as a function of key hyper-parameters such as the learning rate, and a discussion on their performance across are provided in the paper.
更多
查看译文
关键词
Radar imaging,Monitoring,Doppler radar,Spectrogram,Wearable sensors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要