Large effects of tiny structural changes on the cluster formation process in model colloidal fluids: an integral equation study

AIMS MATERIALS SCIENCE(2020)

Cited 4|Views1
No score
Abstract
The formation of aggregates is commonly observed in soft matter such as globular protein solutions and colloidal suspensions. A lively debated issue concerns the possibility to discriminate between a generic intermediate-range order taking place in the fluid, as contrasted with the more specific presence of a clustered state. Recently, we have predicted by Monte Carlo simulations of a standard colloidal model - spherical particles interacting via a short-range attraction followed by a screened electrostatic repulsion at larger distances - the existence of a tiny structural change occurring in the pair structure. This change consists in a reversal of trend affecting a portion of the local density as the attractive strength increases, that is shown to take place precisely at the clustering threshold. Here, we address the same issue by refined thermodynamically self-consistent integral equation theories of the liquid state. We document how such theoretical schemes positively account for the observed phenomenology, highlighting their accuracy to finely describe the aggregation processes in model fluids with microscopic competing interactions.
More
Translated text
Key words
colloidal suspensions,cluster formation process,competing interactions,clustering threshold,simulation,integral equation theories
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined