Monte Carlo Simulations For The Antares Underwater Neutrino Telescope

The ANTARES Collaboration,A. Albert,M. André,M. Anghinolfi,G. Anton,M. Ardid,J. -J. Aubert,J. Aublin,B. Baret,S. Basa,B. Belhorma,V. Bertin,S. Biagi,M. Bissinger,J. Boumaaza,M. Bouta,M. C. Bouwhuis,H. Branzas,R. Bruijn,J. Brunner,J. Busto,A. Capone,L. Caramete,J. Carr,S. Cecchini,S. Celli,M. Chabab,T. N. Chau,R. Cherkaoui El Moursli,T. Chiarusi,M. Circella,A. Coleiro,M. Colomer-Molla,R. Coniglione,P. Coyle,A. Creusot,A. F. Diaz,G. de Wasseige,A. Deschamps,C. Distefano,I. Di Palma,A. Domi,C. Donzaud, D. Dornic,D. Drouhin,T. Eberl,N. El Khayati, A. Enzenhofer,A. Ettahiri,P. Fermani,G. Ferrara,F. Filippini,L. Fusco, P. Gay,H. Glotin,R. Gozzini,K. Graf,C. Guidi,S. Hallmann,H. van Haren,A. J. Heijboer,Y. Hello,J. J. Hernandez-Rey,J. Hossl,J. Hofestadt,F. Huang,G. Illuminati,C. W. James,M. de Jong,P. de Jong,M. Jongen,M. Kadler,O. Kalekin,U. Katz,N. R. Khan-Chowdhury, A. Kouchner,I. Kreykenbohm,V. Kulikovskiy,R. Lahmann,R. Le Breton,D. Lefevre,E. Leonora,G. Levi,M. Lincetto,D. Lopez-Coto,S. Loucatos,J. Manczak,M. Marcelin,A. Margiotta,A. Marinelli,J. A. Martinez-Mora, S. Mazzou,K. Melis,P. Migliozzi,M. Moser,A. Moussa,R. Muller,L. Nauta,S. Navas, E. Nezri,A. Nunez-Castineyra, B. O'Fearraigh,M. Organokov,G. E. Pavalas,C. Pellegrino,M. Perrin-Terrin,P. Piattelli,C. Poirè,V. Popa,T. Pradier,N. Randazzo,S. Reck,G. Riccobene,F. Salesa,A. Sanchez-Losa,D. F. E. Samtleben,M. Sanguineti,P. Sapienza,J. Schnabel,F. Schussler,M. Spurio,Th. Stolarczyk,B. Strandberg,M. Taiuti,Y. Tayalati,T. Thakore,S. J. Tingay,B. Vallage, V. Van Elewyck,F. Versari,S. Viola,D. Vivolo,J. Wilms,A. Zegarelli,J. D. Zornoza,J. Zuniga

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS(2021)

Cited 25|Views66
No score
Abstract
Monte Carlo simulations are a unique tool to check the response of a detector and to monitor its performance. For a deep-sea neutrino telescope, the variability of the environmental conditions that can affect the behaviour of the data acquisition system must be considered, in addition to a reliable description of the active parts of the detector and of the features of physics events, in order to produce a realistic set of simulated events. In this paper, the software tools used to produce neutrino and cosmic ray signatures in the telescope and the strategy developed to represent the time evolution of the natural environment and of the detector efficiency are described.
More
Translated text
Key words
cosmic ray experiments, neutrino astronomy, neutrino detectors, neutrino experiments
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined