Application of microRNA profiling to understand sevoflurane-induced adverse effects on developing monkey brain

NeuroToxicology(2020)

引用 4|浏览12
暂无评分
摘要
We have described that prolonged sevoflurane exposure at a clinically-relevant concentration of 2.5 % caused neuronal cell death in the developing monkey brain. Postnatal day 5 or 6 rhesus monkeys (n = 3) were exposed to 2.5 % sevoflurane for 8 h. Monkeys kept at environmental conditions in the procedure room served as controls (n = 3). Brain tissues were harvested four hours after sevoflurane exposure for histological analysis, and RNA or protein extraction. MicroRNA (miRNA) profiling on the frontal cortex of monkey brains was performed using next-generation sequencing. 417 miRNAs were identified in the frontal cortex, where most neuronal cell death was observed. 7 miRNAs were differentially expressed in frontal cortex after sevoflurane exposure. Five of these were expressed at significantly lower levels than controls and the other two miRNAs were expressed significantly higher. These differentially expressed miRNAs (DEMs) were then loaded to the Ingenuity Pathway Analysis database for pathway analysis, in which targeting information was available for 5 DEMs. The 5 DEMs target 2,919 mRNAs which are involved in pathways that contribute to various cellular functions. Of note, 78 genes that are related to axon guidance signaling were targeted, suggesting that development of the neural circuit may be affected after sevoflurane exposure. Such changes may have long-term effects on brain development and function. These findings are supplementary to our previous observations and provide more evidence for better understanding the adverse effects of sevoflurane on the developing brain after an 8 -h exposure.
更多
查看译文
关键词
microRNA,Sevoflurane,Developing,Monkey
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要