The Microstructure, Thermal, And Mechanical Properties Of Sn-3.0ag-0.5cu-Xsb High-Temperature Lead-Free Solder

MATERIALS(2020)

引用 15|浏览3
暂无评分
摘要
To obtain Sn-3.0Ag-0.5Cu-xSb (x = 0, 25, 28, and 31) high-temperature lead-free solder antimony was added to Sn-3.0Ag-0.5Cu solder. The microstructure, thermal properties, and mechanical behavior of the solder alloy prepared were studied by using JSM-5610LV scanning electron microscope, Germany STA409PC differential scanning calorimeter, AG-I250KN universal tensile testing machine, and other methods. The SEM-EDS results showed that after adding Sb, SnSb phase was formed in the beta-Sn matrix phase. The newly formed SnSb phase and the existing Sb in the solder alloy can inhibit the generation of IMC and refine the IMC layer. The addition of Sb significantly increased the melting temperature of the solder alloy. Among them, the thermal performance of Sn-3.0Ag-0.5Cu-25Sb is the best. The melting temperature of Sn-3.0Ag-0.5Cu-25Sb is 332.91 degrees C and the solid-liquid line range of Sn-3.0Ag-0.5Cu-25Sb solder alloy is 313.28-342.02 degrees C. Its pasty range is 28.74 degrees C, lower than 30 degrees C, which is beneficial for soldering. The test results of the mechanical behavior of Sn-3.0Ag-0.5Cu-xSb solder alloy show that with the increase of Sb addition, the ultimate tensile strength of the solder alloy also increases. However, the change of the elongation of the solder alloy is the opposite. The ultimate tensile strength of the solder alloy increased from 29.45 MPa of Sn-3.0Ag-0.5Cu solder to 70.81 MPa of Sn-3.0Ag-0.5Cu-31Sb solder. The reason for the increase in the strength of the solder alloy is the reduction of the thickness of IMC and the solid solution hardening effect of Sb.
更多
查看译文
关键词
high temperature lead-free solder, mechanical behavior, microstructure, intermetallic compounds
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要