Identification, characterization, and immobilization of a novel YbfF esterase from Halomonas elongata.

International journal of biological macromolecules(2020)

引用 9|浏览12
暂无评分
摘要
The YbfF esterase family, which has a bifurcated binding pocket for diverse ligands, could serve as excellent biocatalysts in industrial and biotechnological applications. Here, the identification, characterization, and immobilization of a novel YbfF esterase (YbfFHalomonas elongata) from Halomonas elongata DSM 2581 is reported. Biochemical characterization of YbfF was carried out using activity staining, chromatographic analysis, kinetic analysis, activity assay, acetic acid release, and pH-indicator-based hydrolysis. YbfFH.elongata displayed broad substrate specificity, including that for p-nitrophenyl esters, glucose pentaacetate, tert-butyl acetate, and β-lactam-containing compounds, with high efficiency. Based on a homology model of YbfFH.elongata, Trp237 in the substrate-binding pocket, a critical residue for catalytic activity and substrate specificity was identified and characterized. Furthermore, crosslinked enzyme aggregates and nanoflower formation were explored to enhance the chemical stability and recyclability of YbfFH.elongata. The present study is the first report of a YbfF esterase from extremophiles, and explains its protein stability, catalytic activity, substrate specificities and diversities, kinetics, functional residues, amyloid formation, and immobilization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要