SERS activity of hybrid nano/microstructures Ag-Fe 3 O 4 based on Dimorphotheca ecklonis pollen grains as bio-template

SCIENTIFIC REPORTS(2020)

引用 10|浏览6
暂无评分
摘要
Nature provides remarkable examples of mass-produced microscale particles with structures and chemistries optimized by evolution for particular functions. Synthetic chemical tailoring of such sustainable biogenic particles may be used to generate new multifunctional materials. Herein, we report a facile method for the synthesis of hybrid nano/microstructures Ag-Fe 3 O 4 based on Dimorphotheca ecklonis pollen grains as bio-template. Silver nanoparticles was biosynthesized using pollen grains as a reduction and stabilization agent as well as a bio-template promoting the adhesion of silver nanoparticles to pollen surface. Fe 3 O 4 nanoparticles were synthesized by co-precipitation method from FeSO 4 . Hybrid nano/microstructures Ag-Fe 3 O 4 based on Dimorphotheca ecklonis pollen grains as bio-template were obtained and characterized using Scanning Electron Microscopy and Transmission Electron Microscopy to study the morphology and structure; Energy-Dispersive X-ray Spectroscopy to determine the chemical composition distribution; and Confocal Fluorescence Microscopy to demonstrate the fluorescence properties of hybrid nano-microstructures. Furthermore, these hybrid nano-microstructures have been studied by Surface-Enhanced Raman Scattering (SERS), using methylene blue as a target molecule; the hybrid nano-microstructures have shown 14 times signal amplification.
更多
查看译文
关键词
Green chemistry,Materials chemistry,Nanobiotechnology,Nanoscale materials,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要