Overview of the hydraulic characteristics of the ITER Central Solenoid Model Coil conductors after 15 years of test campaigns

ADVANCES IN CRYOGENIC ENGINEERING(2017)

Cited 2|Views20
No score
Abstract
The ITER Central Solenoid Model Coil (CSMC) is a superconducting magnet, layer-wound two-in-hand using Nb3Sn cable-in-conduit conductors (CICCs) with the central channel typical of ITER magnets, cooled with supercritical He (SHe) at similar to 4.5 K and 0.5 MPa, operating for approximately 15 years at the National Institutes for Quantum and Radiological Science and Technology in Naka, Japan. The aim of this work is to give an overview of the issues related to the hydraulic performance of the three different CICCs used in the CSMC based on the extensive experimental database put together during the past 15 years. The measured hydraulic characteristics are compared for the different test campaigns and compared also to those coming from the tests of short conductor samples when available. It is shown that the hydraulic performance of the CSMC conductors did not change significantly in the sequence of test campaigns with more than 50 cycles up to 46 kA and 8 cooldown/warmup cycles from 300 K to 4.5 K. The capability of the correlations typically used to predict the friction factor of the SHe for the design and analysis of ITER-like CICCs is also shown.
More
Translated text
Key words
hydraulic characteristics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined