Microscale Flow Dynamics of Red Blood Cells in Microchannels: An Experimental and Numerical Analysis

ADVANCES IN COMPUTATIONAL VISION AND MEDICAL IMAGE PROCESSING: METHODS AND APPLICATIONS(2009)

引用 8|浏览8
暂无评分
摘要
The blood flow dynamics in microcirculation depends strongly on the motion, deformation and interaction of red blood cells (RBCs) within the microvessel. We present confocal micro-PTV measurements on the motion of individual RBCs through a circular polydimethysiloxane (PDMS) microchannel. The RBC radial displacement and dispersion calculated from these measurements show that the RBC paths are strongly dependent on the both Hct and plasma layer. In order to obtain more detailed information of the non-Newtonian property of blood a novel computational scheme is also described. The simulated flow dynamics were in good agreement with the Casson flow model and in vivo observations. In the near future by comparing both results we hope to clarify a variety of complex phenomena occurring at the microscale level.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要