Chrome Extension
WeChat Mini Program
Use on ChatGLM

Anomalous Antimicrobial Susceptibility Trend Identification

42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20(2020)

Cited 1|Views12
No score
Abstract
Antibiotic resistant bacterial infections are a growing global health crisis. Antibiograms, aggregate antimicrobial resistance reports, are critical for tracking antibiotic susceptibility and prescribing antibiotics. This research leverages fifteen years of the expansive Massachusetts statewide antibiogram dataset curated by the Massachusetts Department of Public Health. Given the lengthy annual antibiogram creation process, data are not timely. Our prior research involved forecasting the current antimicrobial susceptibility given historic antibiograms. The objective for this research is to expand upon this prior work by identifying which antibiotic-bacteria combinations have resistance trends that are not well forecasted. For that, our proposed Previous Year Anomalous Trend Identification (PYATI) strategy employs a cluster driven outlier detection solution to identify the trends to remove before forecasting. Employing PYATI to remove antibiotic-bacteria combinations with anomalous trends statistically significantly reduces the forecasting error for the remaining combinations. As antibiotic resistance is furthered by prescribing ineffective antibiotics, PYATI can be leveraged to improve antibiotic prescribing.
More
Translated text
Key words
Anti-Bacterial Agents,Bacteria,Drug Resistance, Microbial,Massachusetts,Microbial Sensitivity Tests
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined