High Capacity Adsorption-Dominated Potassium and Sodium Ion Storage in Activated Crumpled Graphene

ADVANCED ENERGY MATERIALS(2020)

引用 87|浏览22
暂无评分
摘要
Structurally and chemically defective activated-crumbled graphene (A-CG) is employed to achieve unique synergy of large reversible potassium (K) and sodium (Na) ion storage capacity with fast charging and extended cyclability. A-CG synthesis consists of low temperature spraying of graphene oxide slurry, followed by partial reduction annealing and air activation. For K storage, the reversible capacities are 340 mAh g(-1) at 0.04 A g(-1), 261 mAh g(-1) at 0.5 A g(-1), and 210 mAh g(-1) at 2 A g(-1). For Na storage, the reversible capacities are 280 mAh g(-1) at 0.04 A g(-1), 191 mAh g(-1) at 0.5 A g(-1), and 151 mAh g(-1) at 2 A g(-1). A-CG shows a stable intermediate rate (0.5 Ag-1) cycling with both K and Na, with minimal fade after 2800 and 8000 cycles. These are among the most favorable capacity-rate capability-cyclability combinations recorded for potassium-ion battery and sodium-ion battery carbons. Electroanalytical studies (cyclic voltammetry, galvanostatic intermittent titration technique, b-value) and density functional theory (DFT) reveal that enhanced electrochemical performance originates from ion adsorption at various defects, such as Stone-Wales defects. Moreover, DFT highlights enhanced thermodynamic stability of A-CG with adsorbed K versus with adsorbed Na, explaining the unexpected higher reversible capacity with the former.
更多
查看译文
关键词
carbon anodes,ion intercalation,potassium ion batteries,sodium ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要