A Posteriori Corrections To The Iterative Qubit Coupled Cluster Method To Minimize The Use Of Quantum Resources In Large-Scale Calculations

QUANTUM SCIENCE AND TECHNOLOGY(2021)

引用 22|浏览11
暂无评分
摘要
The iterative qubit coupled cluster (iQCC) method is a systematic variational approach to solve the electronic structure problem on universal quantum computers. It is able to use arbitrarily shallow quantum circuits at expense of iterative canonical transformation of the Hamiltonian and rebuilding a circuit. Here we present a variety of a posteriori corrections to the iQCC energies to reduce the number of iterations to achieve the desired accuracy. Our energy corrections are based on a low-order perturbation theory series that can be efficiently evaluated on a classical computer. Moreover, capturing a part of the total energy perturbatively, allows us to formulate the qubit active-space concept, in which only a subset of all qubits is treated variationally. As a result, further reduction of quantum resource requirements is achieved. We demonstrate the utility and efficiency of our approach numerically on the examples of 10-qubit N-2 molecule dissociation, the 24-qubit H2O symmetric stretch, and 56-qubit singlet-triplet gap calculations for the technologically important complex, tris-(2-phenylpyridine)iridium(III) Ir(ppy)(3).
更多
查看译文
关键词
quantum chemistry, quantum computing, computational methods
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要