Merging 3D printing with electrospun biodegradable small-caliber vascular grafts immobilized with VEGF.

Nanomedicine : nanotechnology, biology, and medicine(2020)

引用 19|浏览16
暂无评分
摘要
The major challenge of commercially available vascular substitutes comes from their limitations in terms of hydrophobic surface, which is hostile to cell growth. To date, tissue-engineered and synthetic grafts have not translated well to clinical trials when looking at small diameters. We conceptualized a cell-free structurally reinforced biodegradable vascular graft recapitulating the anisotropic feature of a native blood vessel. The nanofibrous scaffold is designed in such a way that it will gradually degrade systematically to yield a neo-vessel, facilitated by an immobilized bioactive molecule-vascular endothelial growth factor (VEGF). The nano-topographic cue of the device is capable of direct host cell infiltration. We evaluated the burst pressure, histology, hemocompatibility, compression test, and mechanical analysis of the new graft. The graft implanted into the carotid artery of a porcine model demonstrated a good patency rate as early as two week post-implantation. This graft reinforced design approach when employed in vascular tissue engineering might strongly influencing regenerative medicine.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要