Probing photophobic (rel)axion dark matter

arxiv(2020)

引用 0|浏览2
暂无评分
摘要
We investigate the interplay between early universe cosmology and dark matter direct detection, considering axion models with naturally suppressed couplings to photons. In the context of the cosmological relaxation of the electroweak scale, we focus on a scenario of \emph{Relaxion Dark Matter}, in which the relaxion field constitutes all the observed dark matter relic density and its allowed mass range is fixed to a few $\mathrm{keV}$ by construction. In particular, we show that a relaxion particle with mass $m_\phi= 3.0 \,\mathrm{keV}$ which couples to electrons with $g_{\phi, e}= 6.8 \times 10^{-14}$ is consistent with the XENON1T excess, while accounting for the observed dark matter and satisfying astro/cosmo probes. This scenario uses the electroweak scale as the link connecting the relaxion production at early times with the dark matter absorption rate in direct detection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要