Hydrolysis of Schiff bases with phenyl-ethynyl-phenyl system: The importance for biological and physicochemical studies.

Journal of photochemistry and photobiology. B, Biology(2020)

Cited 7|Views19
No score
Abstract
A series of new Schiff bases containing the phenyl-ethynyl-phenyl system was synthesized and their thermal stability, photophysical and electrochemical properties were investigated. Moreover, DFT calculations were performed to obtain the optimized ground-state geometry and distribution of the HOMO and LUMO levels as well as IR spectra of the prepared compounds. It was found that, the photoluminescence of synthesized imines was negligible in all investigated organic solvents except for the PBS/ACN mixture. As was proved in further studies, this phenomenon was related to the partial hydrolysis of imines, which is the source of the fluorogenic aldehyde causing the aggreggacion incrased-emision effect. In further research, due to the susceptibility of the azomethines to partial hydrolysis, the biological activity of 2-{(E)-[4-(phenylethynyl) phenyl]imino}phenol (1b), substrate (2-aminophenol) and Cu(II)-1b complex was analyzed. The biological tests showed, that 1b (as example of imine resveratrol analogue), demonstrated its increased cytostatic activity in prostate cancer cellular system. It was proved that the non-hydrolyzed imine was crucial for the cytotoxic effect. This activity could be ascribed to its Cu(II) complexing capability as showed in our previous research.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined