Comparison of organic electrolytes at various temperatures for 2.8 V–Li-ion hybrid supercapacitors

Electrochimica Acta(2020)

引用 15|浏览4
暂无评分
摘要
We explore different electrolytes containing lithium perchlorate (LiClO4) and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) salts in various solvents at different temperatures to associate the electrochemical stability of lithium titanium oxide (LTO)/lithium manganese oxide (LMO)-activated carbon (AC) composite Li-ion hybrid supercapacitors. By varying the solvents and operation temperature, we were able to detect a correlation between the electrochemical performance and the conductivity of each electrolyte. To test the electrochemical stability and longevity of the electrolytes in such a system, full-cells were analyzed via a voltage floating for 10 h at charged state (2.8 V) of the full-cell. Energy and power performance were the highest for acetonitrile (ACN) containing electrolytes due to their high lithium-ion conductivity. Additionally, the longevity of LiClO4 in 3-methoxypropionitrile (3-MPN) was superior to all tested electrolytes at ambient temperature with 97% capacity retention and energy efficiency of about 86% after 500 h of voltage floating. LiClO4 in a mixture of ACN and ethylene carbonate (EC) was the most stable electrolyte at high temperatures with 70% capacity retention after 500 h voltage floating at 60°C and 50% capacity retention after 250 h voltage floating. The longevity of LiTFSI in ACN and LiClO4 in 3-MPN electrolyte demonstrated a capacity retention of 97% and 92% after 500 h voltage floating, respectively, at low temperature (−10 °C).
更多
查看译文
关键词
Hybrid supercapacitor,Electrolytes,Electrochemical energy storage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要