Beyond forest succession: a gap model to study ecosystem functioning and tree community composition under climate change

Functional Ecology(2020)

引用 20|浏览19
暂无评分
摘要
Climate change impacts forest functioning and dynamics, and large uncertainties remain regarding the interactions between species composition, demographic processes, and environmental drivers. There are few robust tools available to link these processes, which precludes accurate projections and recommendations for long-term forest management. Forest gap-models present a balance between complexity and generality and are widely used in predictive forest ecology. However, their relevance to tackle questions about the links between species composition, climate and forest functioning is unclear. In this regard, demonstrating the ability of gap-models to predict the growth of forest stands at the annual time scale – representing a sensitive and integrated signal of tree functioning and mortality risk - appears as a fundamental step. In this study, we aimed at assessing the ability of a gap-model to accurately predict forest growth in the short-term and potential community composition in the long-term, across a wide range of species and environmental conditions. To do so, we present the gap-model ForCEEPS, calibrated using an original parameterization procedure for the main tree species in France. ForCEEPS was shown to satisfactorily predict forest annual growth (averaged over a few years) at the plot level from mountain to Mediterranean climates, regardless the species. Such an accuracy was not gained at the cost of losing precision for long-term predictions, as the model showed a strong ability to predict potential community composition along a gradient of sites with contrasted conditions. The mechanistic relevance of ForCEEPS parameterization was explored by showing the congruence between the values of key model parameter and species functional traits. We further showed that accounting for the spatial configuration of crowns within forest stands, the effects of climatic constraints and the variability of shade tolerances in the species community are all crucial to better predict short-term productivity with gap-models. The dual ability of predicting short-term functioning and long-term community composition, as well as the balance between generality and realism (i.e., predicting accuracy) of the new generation of gap-models may open great perspectives for the exploration of the biodiversity-ecosystem functioning relationships, species coexistence mechanisms, and the impacts of climate change on forest ecosystems. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要