Evolutionarily related small viral fusogens hijack distinct but modular actin nucleation pathways to drive cell-cell fusion

bioRxiv (Cold Spring Harbor Laboratory)(2020)

引用 13|浏览11
暂无评分
摘要
Fusion-associated small transmembrane (FAST) proteins are a diverse family of non-structural viral proteins that, once expressed on the plasma membrane of infected cells, drive fusion with neighboring cells, increasing viral spread and pathogenicity. Unlike viral fusogens with tall ectodomains that pull two membranes together through conformational changes, FAST proteins have short fusogenic ectodomains that cannot bridge the inter-membrane gap between neighboring cells. One orthoreovirus FAST protein, p14, has been shown to hijack the actin cytoskeleton to drive cell-cell fusion, but the actin adaptor-binding motif identified in p14 is not found in any other FAST protein. Here, we report that an evolutionarily divergent FAST protein, p22 from aquareovirus, also hijacks the actin cytoskeleton but does so through different adaptor proteins, Intersectin-1 and Cdc42, that trigger N-WASP-mediated branched actin assembly. We show that despite using different pathways, the cytoplasmic tails of p22 and p14 can be exchanging to create a potent chimeric fusogen, suggesting they are modular and play similar functional roles. When we replace p22’s branched actin nucleator, N-WASP, with the parallel filament nucleator, formin, its ability to drive fusion is maintained, indicating that localized mechanical pressure on the plasma membrane coupled to a membrane-disruptive ectodomain is sufficient to drive cell-cell fusion. This work points to a common biophysical strategy used by FAST proteins to push rather than pull membranes together to drive fusion, one that may be harnessed by other short fusogens responsible for physiological cell-cell fusion. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要