Global drivers of obligate mycorrhizal symbionts diversification

Molecular Ecology(2022)

Cited 1|Views11
No score
Abstract
Analyzing diversification dynamics is key to understanding the past evolutionary history of clades that led to present-day biodiversity patterns. While such analyses are widespread in well-characterized groups of species, they are much more challenging in groups which diversity is mostly known through molecular techniques. Here, we use the largest global database on the small subunit (SSU) rRNA gene of Glomeromycotina, a subphylum of microscopic arbuscular mycorrhizal fungi that provide mineral nutrients to most land plants by forming one of the oldest terrestrial symbioses, to analyze the diversification dynamics of this clade in the past 500 million years (Myr). We perform a range of sensitivity analyses and simulations to control for potential biases linked to the nature of the data. We find that Glomeromycotina tend to have low speciation rates compared to other eukaryotes. After a peak of speciations between 200 and 100 Myr ago, they experienced an important decline in speciation rates toward the present. Such a decline could be at least partially related to a shrinking of their mycorrhizal niches and to their limited ability to colonize new niches. Our analyses identify patterns of diversification in a group of obligate symbionts of major ecological and evolutionary importance and illustrate that short molecular markers combined with intensive sensitivity analyses can be useful for studying diversification dynamics in microbial groups. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined