Chrome Extension
WeChat Mini Program
Use on ChatGLM

Epoxy fatty acid dysregulation and neuroinflammation in Alzheimer’s disease is resolved by a soluble epoxide hydrolase inhibitor

biorxiv(2020)

Cited 5|Views36
No score
Abstract
Neuroinflammation has been increasingly recognized to play critical roles in Alzheimer’s disease (AD). The epoxy fatty acids (EpFAs) are derivatives of the arachidonic acid metabolism with anti-inflammatory activities. However, their efficacy is limited due to the rapid hydrolysis by the soluble epoxide hydrolase (sEH). We found that sEH is predominantly expressed in astrocytes where its levels are significantly elevated in postmortem human AD brains and in β-amyloid mouse models, and the latter is correlated with drastic reductions of brain EpFA levels. Using a highly potent and specific small molecule sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), we report here that TPPU treatment potently protected against LPS-induced inflammation in vitro and in vivo. Long-term administration of TPPU to the 5xFAD mouse model via drinking water reversed microglia and astrocyte reactivity and immune pathway dysregulation, and this is associated with reduced β–amyloid pathology and improved synaptic integrity and cognitive function. Importantly, TPPU treatment reinstated and positively correlated EpFA levels in the 5xFAD mouse brain, demonstrating its brain penetration and target engagement. These findings support TPPU as a novel therapeutic target for the treatment of AD and related disorders.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined