Multiscale interactions between plant part and a steep environmental gradient determine plant microbial composition in a tropical watershed

The ISME Journal(2020)

Cited 0|Views8
No score
Abstract
Plant microbiomes are shaped by forces working at different spatial scales. Environmental factors determine a pool of potential symbionts while host physiochemical factors influence how those microbes associate with distinct plant tissues. Interactions between these scales, however, are seldom considered. Here we analyze epiphytic microbes from nine Hibiscus tiliaceus trees across a steep environmental gradient within a single Hawaiian watershed. At each location we sampled eight microhabitats: leaves, petioles, axils, stems, roots, and litter from the plant, as well as surrounding air and soil. While the composition of microbial communities is driven primarily by microhabitat, this variable predicted more than twice the compositional variance for bacteria compared to fungi. Fungal community compositional dissimilarity increased more rapidly along the gradient than did bacteria. Additionally, the spatial dynamics of fungal communities differed among plant parts, and these differences influenced the distribution patterns and range size of individual taxa. Within plants, microbes were compositionally nested such that aboveground communities contained a subset of the diversity found belowground. Our findings identify potential differences underlying the mechanisms shaping communities of fungi and bacteria associated with plants, and indicate an interaction between assembly mechanisms working simultaneously on different spatial scales. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined