谷歌浏览器插件
订阅小程序
在清言上使用

Minimizing ion competition boosts volatile metabolome coverage by secondary electrospray ionization orbitrap mass spectrometry

ANALYTICA CHIMICA ACTA(2021)

引用 0|浏览12
暂无评分
摘要
Secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS) is an emerging technique for the detection of volatile metabolites. However, sensitivity and reproducibility of SESI-HRMS have limited its applications in untargeted metabolomics profiling. Ion suppression in the SESI source has been considered to be the main cause. Here, we show that besides ion suppression, ion competition in the C-trap of Orbitrap instruments is another important factor that influences sensitivity and reproducibility of SESI-MS. Instead of acquiring the full mass-to-charge ratio (m/z) range, acquisition of consecutive m/z windows to minimize the ion competition effect allows the detection of more features. m/z window ranges are optimized to fill the C-trap either with an equal number of features or an equal cumulative intensity per window. Considering a balance between maximizing scanning speed and minimizing ion competition, splitting the m/z = 50-500 range into 4 windows is selected for measuring human breath and bacterial culture samples on SESI-Orbitrap MS, corresponding to a duty cycle of 2.3 s at a resolution of 140'000. In a small cohort of human subjects, the proposed splitting into 4 windows allows three times more features to be detected compared to the classical full m/z range method. (C) 2021 The Authors. Published by Elsevier B.V.
更多
查看译文
关键词
Secondary electrospray,Ion competition,Ion suppression,Volatile metabolites,Metabolomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要