“A negative feedback loop mediated by the NR4A family of nuclear hormone receptors restrains expansion of B cells that receive signal one in the absence of signal two”

Nature Immunology(2020)

Cited 2|Views10
No score
Abstract
Ag stimulation (signal 1) triggers B cell activation and proliferation, and primes B cells to recruit, engage, and respond to T cell help (signal 2). However, failure to receive signal 2 within a defined window of time results in an abortive round of proliferation, followed by anergy or apoptosis. Although the molecular basis of T cell help has been extensively dissected, the mechanisms that restrain Ag-stimulated B cells, and enforce dependence upon co-stimulation, are incompletely understood. Nr4a1-3 encode a small family of orphan nuclear receptors that are rapidly induced by B cell receptor (BCR) stimulation, yet little is known about their function in humoral immune responses. Here we use germline and conditional loss-of-function mouse models to show that Nr4a1 and Nr4a3 play partially redundant roles to restrain both the survival and proliferation of B cells that receive signal 1 in the absence of co-stimulatory signals, and do so in part by repressing expression of BATF and consequently c-MYC. Correspondingly, Ab responses to TI-2 immunogens are enhanced in the absence of Nr4a1 , but are unaltered in response to immunogens that incorporate co-stimulatory signals. Unexpectedly, we also identify a role for the NR4A family in restraining B cell access to T cell help by repressing expression of the T cell chemokines CCL3/4, as well as CD86 and ICAM1, and show that this is relevant under conditions of competition for limiting T cell help. Our studies collectively reveal a novel negative feedback loop mediated by the NR4A family that increases B cell dependence upon T cell help and restrains strongly Ag-activated B cell clones from monopolizing limiting amounts of T cell help. We speculate that this imposes B cell tolerance and dampens immunodominance to facilitate preservation of clonal diversity during an immune response.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined