Chrome Extension
WeChat Mini Program
Use on ChatGLM

Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone.

SENSORS AND ACTUATORS B-CHEMICAL(2021)

Cited 293|Views47
No score
Abstract
The recent pandemic outbreak of COVID-19 caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a threat to public health globally. Thus, developing a rapid, accurate, and easy-to-implement diagnostic system for SARS-CoV-2 is crucial for controlling infection sources and monitoring illness progression. Here, we reported an ultrasensitive electrochemical detection technology using calixarene functionalized graphene oxide for targeting RNA of SARS-CoV-2. Based on a supersandwich-type recognition strategy, the technology was confirmed to practicably detect the RNA of SARS-CoV-2 without nucleic acid amplification and reverse-transcription by using a portable electrochemical smartphone. The biosensor showed high specificity and selectivity during in silico analysis and actual testing. A total of 88 RNA extracts from 25 SARS-CoV-2-confirmed patients and eight recovery patients were detected using the biosensor. The detectable ratios (85.5 % and 46.2 %) were higher than those obtained using RT-qPCR (56.5 % and 7.7 %). The limit of detection (LOD) of the clinical specimen was 200 copies/mL, which is the lowest LOD among the published RNA measurement of SARS-CoV-2 to date. Additionally, only two copies (10 mu L) of SARS-CoV-2 were required for per assay. Therefore, we developed an ultrasensitive, accurate, and convenient assay for SARS-CoV-2 detection, providing a potential method for point-of-care testing.
More
Translated text
Key words
SARS-CoV-2,Electrochemical biosensor,Supersandwich-type biosensor,Smartphone,Calixarene
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined