Single cell tri-channel-processing reveals structural variation landscapes and complex rearrangement processes

biorxiv(2019)

引用 1|浏览3
暂无评分
摘要
Structural variation (SV), where rearrangements delete, duplicate, invert or translocate DNA segments, is a major source of somatic cell variation. It can arise in rapid bursts, mediate genetic heterogenity, and dysregulate cancer-related pathways. The challenge to systematically discover SVs in single cells remains unsolved, with copy-neutral and complex variants typically escaping detection. We developed single cell tri-channel-processing (scTRIP), a computational framework that jointly integrates read depth, template strand and haplotype phase to comprehensively discover SVs in single cells. We surveyed SV landscapes of 565 single cell genomes, including transformed epithelial cells and patient-derived leukemic samples, and discovered abundant SV classes including inversions, translocations and large-scale genomic rearrangements mediating oncogenic dysregulation. We dissected the ‘molecular karyotype’ of the leukemic samples and examined their clonal structure. Different from prior methods, scTRIP also enabled direct detection and discrimination of SV mutational processes in individual cells, including breakage-fusion-bridge cycles. scTRIP will facilitate studies of clonal evolution, genetic mosaicism and somatic SV formation, and could improve disease classification for precision medicine.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要