X-ray 3D imaging of gene expression in whole-mount murine brain by microCT, implication for functional analysis of tRNA endonuclease 54 gene mutated in pontocerebellar hypoplasia

biorxiv(2019)

引用 0|浏览13
暂无评分
摘要
Acquisition of detailed structural and molecular information from intact biological samples, while preserving cellular three-dimensional structures, still represents a challenge for biological studies aiming to unravel system functions. Here we describe a novel X-ray-based methodology for analysis of gene expression pattern in intact murine brain ex vivo by microCT. The method relays on detection of bromine molecules in the products of enzymatic reaction generated by the -galactosidase (lacZ) gene reporter. To demonstrate the feasibility of the method, the analysis of the expression pattern of tRNA endonuclease 54 (Tsen54)-lacZ reporter gene in the whole-mount murine brain in semi-quantitative manner is performed. Mutations in Tsen54 gene causes pontocerebellar hypoplasia (PCH), severe neurodegenerative disorder with both mental and motor deficits. Comparing relative levels of Tsen54 gene expression, we have demonstrated that highest Tsen54 expression observed in anatomical brain substructures important for the normal motor and memory functions in mice. In the forebrain strong expression in perirhinal, retrosplenial and secondary motor areas was observed. In olfactory area Tsen54 is highly expressed in the nucleus of the lateral olfactory tract, anterior olfactory and bed nuclei, while in hypothalamus in lateral mammillary nucleus and preoptic area. In hindbrain Tsen54 is expressed in the reticular, cuneate and trigeminal nuclei of medulla, and in pontine gray of pons and in cerebellum, in the molecular and Purkinje cell layers. Delineating anatomical brain regions in which Tsen54 is strongly expressed will allow functionally address the role Tsen54 gene in normal physiology and in PCH disease.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要