A Novel Danshensu Derivative Ameliorates Experimental Colitis By Modulating Nadph Oxidase 4-Dependent Nlrp3 Inflammasome Activation

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE(2020)

Cited 8|Views7
No score
Abstract
We have previously reported a novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2-ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)], derived from danshensu, exhibits cytoprotective activities in vitro. Here, we investigated the effects and underlying mechanisms of DSC on dextran sodium sulphate (DSS)-induced experimental colitis. We found that DSC treatment afforded significant protection against the development of colitis, evidencing by suppressed inflammatory responses and enhanced barrier integrity. Intriguingly, DSC specifically down-regulated DSS-induced colonic NADPH oxidase 4 (Nox4) expression, accompanied by a balanced redox status, suppressed nuclear factor-kappa B (NF-kappa B) and NLRP3 inflammasome activation and up-regulated nuclear factor (erythroid-derived 2)-like 2 and haeme oxygenase-1 expression. In vitro study also demonstrated DSC also markedly decreased Nox4 expression and activity associated with inhibiting reactive oxygen species generation, NF-kappa B activation and NLRP3 inflammasome activation in bone marrow-derived macrophages. Either lentiviral Nox4 shRNA-mediated Nox4 knockdown or Nox4-specific small-interfering RNA mimicked effects of DSC by suppressing NLPR3 inflammasome activation to alleviate experimental colitis or inflammatory macrophage response. Collectively, our results provide the first evidence that DSC ameliorates experimental colitis partly through modulating Nox4-mediated NLRP3 inflammasome activation.
More
Translated text
Key words
DSC, inflammatory bowel disease, NADPH oxidase 4, NLRP3 inflammasome, reactive oxygen species
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined