谷歌浏览器插件
订阅小程序
在清言上使用

MiR103a-3p and miR107 are related to adaptive coping in a cluster of fibromyalgia patients

PloS one(2020)

引用 6|浏览7
暂无评分
摘要
Background MicroRNA (miRNA) mainly inhibit post-transcriptional gene expression of specific targets and may modulate disease severity. Objective We aimed to identify miRNA signatures distinguishing patient clusters with fibromyalgia syndrome (FMS). Subjects and methods We previously determined four FMS patient clusters labelled "maladaptive", "adaptive", "vulnerable", and "resilient". Here, we cluster-wise assessed relative gene expression of miR103a-3p, miR107, miR130a-3p, and miR125a-5p in white blood cell (WBC) RNA of 31 FMS patients and 16 healthy controls. Sum scores of pain-, stress-, and resilience-related questionnaires were correlated with miRNA relative gene expression. A cluster-specific speculative model of a miRNA-mediated regulatory cycle was proposed, and its potential targets verified by the online tool "target scan human". Results One-way ANOVA revealed lower gene expression of miR103a-3p, miR107, and miR130a-3p in FMS patients compared to controls (p < 0.05). Follow-up post-hoc tests indicated the highest peak of gene expression of miR103a-3p for the adaptive cluster (p < 0.05), i.e. in patients with low disability in all symptom categories. Gene expression of miR103a-3p correlated with FMS related disability and miR107 with the score "physical abuse" of the trauma questionnaire (p < 0.05). Target scan identified sucrose non-fermentable serine/threonine protein kinase, nuclear factor kappa-b, cyclin dependent kinase, and toll-like receptor 4 as genetic targets of the miR103a/107 miRNA family. Conclusion We show an association between upregulated gene expression of miR103a, tendentially of miR107, and adaptive coping in FMS patients. Validation of this pair of miRNA may enable to identify a somatic resilience factor in FMS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要