Efficient whole genome sequencing of influenza A viruses

biorxiv(2019)

引用 2|浏览24
暂无评分
摘要
The constant threat of emergence for novel pathogenic influenza A viruses with pandemic potential, makes full-genome characterization of circulating influenza viral strains a high priority, allowing detection of novel and re-assorting variants. Sequencing the full-length genome of influenza A virus traditionally required multiple amplification rounds, followed by the subsequent sequencing of individual PCR products. The introduction of high-throughput sequencing technologies has made whole genome sequencing easier and faster. We present a simple protocol to obtain whole genome sequences of hypothetically any influenza A virus, even with low quantities of starting genetic material. The complete genomes of influenza A viruses of different subtypes and from distinct sources (clinical samples of pdmH1N1, tissue culture-adapted H3N2 viruses, or avian influenza viruses from cloacal swabs) were amplified with a single multisegment reverse transcription-PCR reaction and sequenced using Illumina sequencing platform. Samples with low quantity of genetic material after initial PCR amplification were re-amplified by an additional PCR using random primers. Whole genome sequencing was successful for 66% of the samples, whilst the most relevant genome segments for epidemiological surveillance (corresponding to the hemagglutinin and neuraminidase) were sequenced with at least 93% coverage (and a minimum 10x) for 98% of the samples. Low coverage for some samples is likely due to an initial low viral RNA concentration in the original sample. The proposed methodology is especially suitable for sequencing a large number of samples, when genetic data is urgently required for strains characterization, and may also be useful for variant analysis.
更多
查看译文
关键词
Influenza A viruses,high-throughput sequencing,whole genome amplification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要