Alpha Herpesvirus Egress and Spread from Neurons Uses Constitutive Secretory Mechanisms Independent of Neuronal Firing Activity

biorxiv(2019)

引用 0|浏览27
暂无评分
摘要
Alpha herpesviruses naturally infect the peripheral nervous system, and can spread to the central nervous system causing severe deadly or debilitating disease. Because alpha herpesviruses spread along synaptic circuits, and infected neurons exhibit altered electrophysiology and increased spontaneous firing, we hypothesized that alpha herpesviruses use activity-dependent synaptic vesicle-like regulated secretory mechanisms for egress and spread from neurons. To address this hypothesis, we used a compartmentalized primary neuron culture system to measure egress and spread of pseudorabies virus (PRV), pharmacological and optogenetics approaches to modulate neuronal firing activity, and a live-cell fluorescence microscopy assay to directly visualize the exocytosis of individual virus particles from infected neurons. Using tetrodotoxin to silence neuronal activity, we observed no inhibition of virus spread, and using potassium chloride or optogenetics to elevate neuronal activity, we also show no increase in virus spread. Using a live-cell fluorescence microscopy method to directly measure virus egress from infected neurons, we observed no association between virus particle exocytosis and intracellular Ca signaling. Finally, we observed virus particle exocytosis occurs in association with constitutive secretory Rab GTPases, Rab6a and Rab8a, not Rab proteins that are associated with the Ca-regulated secretory pathway in neurons, Rab3a and Rab11a. Therefore, we conclude that alpha herpesvirus egress and spread is independent of neuronal activity and Ca signaling because virus particle exocytosis uses constitutive secretory mechanisms in neurons.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要