Chrome Extension
WeChat Mini Program
Use on ChatGLM

E-cadherin binds glycosylated sodium-taurocholate cotransporting polypeptide to facilitate hepatitis B virus entry

biorxiv(2019)

Cited 1|Views21
No score
Abstract
Hepatitis B virus (HBV) continues to pose a serious public health risk and is one of the major causes of chronic liver disease and hepatocellular carcinoma. Current antiviral therapy does not effectively eradicate HBV and, thus, further investigation into the mechanisms employed by HBV to allow for invasion of host cells, is critical for the development of novel therapeutic agents. Sodium-taurocholate cotransporting polypeptide (NTCP) has been identified as a functional receptor for HBV. However, the specific mechanism by which HBV and NTCP interact remains unclear. Herein we show that the expression of E-cadherin was upregulated in cells expressing HBV, while knockdown of E-cadherin in HepG2-NTCP cells, HepaRG cells and primary human hepatocytes served to significantly inhibit infection by HBV and HBV pseudotyped particles. Alternatively, exogenous E-cadherin expression was found to significantly enhance HBV uptake by HepaRG cells. Further, mechanistic studies identified glycosylated NTCP localized to the cell membrane via E-cadherin binding, which subsequently allowed for more efficient binding between NTCP and the preS1 of the large HBV surface proteins. E-cadherin was also found to play a key role in establishing and maintaining hepatocyte polarity, which is essential for efficient HBV infection. These observations suggest that E-cadherin facilitates HBV entry through regulation of NTCP distribution and hepatocyte polarity.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined