Chrome Extension
WeChat Mini Program
Use on ChatGLM

Cryo-EM structure of the entire mammalian F-type ATP synthase

Nature Structural & Molecular Biology(2020)

Cited 105|Views4
No score
Abstract
The majority of adenosine triphosphate (ATP) powering cellular processes in eukaryotes is produced by the mitochondrial F1Fo ATP synthase. Here, we present the atomic models of the membrane Fo domain and the entire mammalian (ovine) F1Fo, determined by cryo-electron microscopy. Subunits in the membrane domain are arranged in the ‘proton translocation cluster’ attached to the c-ring and a more distant ‘hook apparatus’ holding subunit e. Unexpectedly, this subunit is anchored to a lipid ‘plug’ capping the c-ring. We present a detailed proton translocation pathway in mammalian Fo and key inter-monomer contacts in F1Fo multimers. Cryo-EM maps of F1Fo exposed to calcium reveal a retracted subunit e and a disassembled c-ring, suggesting permeability transition pore opening. We propose a model for the permeability transition pore opening, whereby subunit e pulls the lipid plug out of the c-ring. Our structure will allow the design of drugs for many emerging applications in medicine. Cryo-EM structures of the entire mammalian F1Fo ATPase reveal several new features and details on the proton translocation pathway and suggest a model for the opening of the permeability transition pore.
More
Translated text
Key words
Cryoelectron microscopy,Enzyme mechanisms,Life Sciences,general,Biochemistry,Protein Structure,Membrane Biology,Biological Microscopy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined